38 research outputs found

    Cardiorespiratory Fitness, Physical Activity, and Insulin Resistance in Children

    Get PDF
    This is the author accepted manuscript. The final version is available from Lippincott, Williams & Wilkins via the DOI in this record.Purpose: Few studies have investigated the independent and joint associations of cardiorespiratory fitness (CRF) and body fat percentage (BF%) with insulin resistance in children. We investigated the independent and combined associations of CRF and BF% with fasting glycaemia and insulin resistance and their interactions with physical activity (PA) and sedentary time among 452 children aged 6¬–8 years. Methods: We assessed CRF with a maximal cycle ergometer exercise test and used allometrically scaled maximal power output (Wmax) for lean body mass (LM1.13) and body mass (BM1) as measures of CRF. BF% and LM were measured by dual-energy X-ray absorptiometry, fasting glycaemia by fasting plasma glucose, and insulin resistance by fasting serum insulin and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). PA energy expenditure (PAEE), moderate-to-vigorous PA (MVPA), and sedentary time were assessed by combined movement and heart rate sensor. Results: Wmax/LM1.13 was not associated with glucose (β=0.065, 95% CI=-0.031 to 0.161), insulin (β=-0.079, 95% CI=-0.172 to 0.015), or HOMA-IR (β=-0.065, 95% CI=-0.161 to 0.030). Wmax/BM1 was inversely associated with insulin (β=-0.289, 95% CI=-0.377 to -0.200) and HOMA-IR (β=-0.269, 95% CI=-0.359 to -0.180). BF% was directly associated with insulin (β=0.409, 95% CI=0.325 to 0.494) and HOMA-IR (β=0.390, 95% CI=0.304 to 0.475). Higher Wmax/BM1, but not Wmax/LM1.13, was associated with lower insulin and HOMA-IR in children with higher BF%. Children with higher BF% and who had lower levels of MVPA or higher levels of sedentary time had the highest insulin and HOMA-IR. Conclusion: Children with higher BF% together with less MVPA or higher levels of sedentary time had the highest insulin and HOMA-IR. CRF appropriately controlled for body size and composition using LM was not related to insulin resistance among children.Medical Research CouncilNIH

    Whodunnit? Electrophysiological correlates of agency judgements.

    Get PDF
    Sense of agency refers to the feeling that "I" am responsible for those external events that are directly produced by one's own voluntary actions. Recent theories distinguish between a non-conceptual "feeling" of agency linked to changes in the processing of self-generated sensory events, and a higher-order judgement of agency, which attributes sensory events to the self. In the current study we explore the neural correlates of the judgement of agency by means of electrophysiology. We measured event-related potentials to tones that were either perceived or not perceived as triggered by participants' voluntary actions and related these potentials to later judgements of agency over the tones. Replicating earlier findings on predictive sensory attenuation, we found that the N1 component was attenuated for congruent tones that corresponded to the learned action-effect mapping as opposed to incongruent tones that did not correspond to the previously acquired associations between actions and tones. The P3a component, but not the N1, directly reflected the judgement of agency: deflections in this component were greater for tones judged as self-generated than for tones judged as externally produced. The fact that the outcome of the later agency judgement was predictable based on the P3a component demonstrates that agency judgements incorporate early information processing components and are not purely reconstructive, post-hoc evaluations generated at time of judgement

    A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone), tactile (electrical stimulation to the index finger), visual (simple figure of a star), and noxious (intra-epidermal electrical stimulation to the dorsum of the hand) stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers.</p> <p>Results</p> <p>Results of source modeling showed multimodal activations in the anterior part of the cingulate cortex (ACC) and hippocampal region (Hip). The activity in the ACC was biphasic. In all sensory modalities, the first component of ACC activity peaked 30–56 ms later than the peak of the major modality-specific activity, the second component of ACC activity peaked 117–145 ms later than the peak of the first component, and the activity in Hip peaked 43–77 ms later than the second component of ACC activity.</p> <p>Conclusion</p> <p>The temporal sequence of activations through modality-specific and multimodal pathways was similar among all sensory modalities.</p

    Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli

    Get PDF
    Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations

    Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex

    Get PDF
    Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI

    Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    Caloric vestibular stimulation modulates nociceptive evoked potentials

    Get PDF
    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex

    Changes in neurophysiologic markers of visual processing following beneficial anti-VEGF treatment in macular degeneration

    No full text
    Pasi Vottonen,1 Kai Kaarniranta,1,2 Ari P&amp;auml;&amp;auml;kk&amp;ouml;nen,3 Ina M Tarkka41Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; 2Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; 3Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; 4Department of Health Sciences, University of Jyv&amp;auml;skyl&amp;auml;, Jyv&amp;auml;skyl&amp;auml;, FinlandPurpose: Antivascular endothelial growth factor (VEGF) agents have been shown to improve visual acuity and prevent vision loss in exudative age-related macular degeneration. As the vision improves relatively quickly in response to intravitreal injections, we wanted to know whether this improvement is reflected in electrophysiological markers of visual cortical processing.Patients and methods: Our interventional case series included six elderly patients who underwent injection treatment to the affected eye. Their visual acuity, tomographic images of retinal thickness, and visual evoked potentials (VEP) were assessed before treatment and six weeks after the last injection.Results: All patients showed improved visual acuity and reduced retinal fluid after the treatment. All but one patient showed increased VEP P100 component amplitudes and/or shortened latencies in the treated eye. These VEP changes were consistent with improved vision while the untreated eyes showed no changes.Conclusions: Our results indicate that antivascular endothelial growth factor injections improved visual function of the treated eyes both in the level of the retina and in the level of visual cortical processing.Keywords: age-related eye diseases, exudative age-related macular degeneration, visual evoked potentials, scalp-recorded EEG, visual acuit
    corecore